全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2015 

Pretzel Knots and q-Series

Full-Text   Cite this paper   Add to My Lib

Abstract:

The tail of the colored Jones polynomial of an alternating link is a $q$-series invariant whose first $n$ terms coincide with the first $n$ terms of the $n$-th colored Jones polynomial. Recently, it has been shown that the tail of the colored Jones polynomial of torus knots give rise to Ramanujan type identities. In this paper, we study $q$-series identities coming from the colored Jones polynomial of pretzel knots. We prove a false theta function identity that goes back to Ramanujan and we give a natural generalization of this identity using the tail of the colored Jones polynomial of Pretzel knots. Furthermore, we compute the tail for an infinite family of Pretzel knots and relate it to false theta function-type identities.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133