全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2015 

Shifted Poisson and Batalin-Vilkovisky structures on the derived variety of complexes

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study the shifted Poisson structure on the cochain complex C*(g) of a graded Lie algebra arising from shifted Lie bialgebra structure on g. We apply this to construct a 1-shifted Poisson structures on an infinitesimal quotient of the derived variety of complexes RCom(V) by a subgroup of the automorphisms of V, and a non-shifted Poisson structure on an appropriately defined derived variety of 1-periodic complexes, extending the standard Kirillov-Kostant Poisson structure on gl*_n. We also show that in the case of RCom(V) the 1-shifted structure is up to homotopy a Batalin-Vilkovisky algebra structure.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133