|
Mathematics 2014
Functional a posteriori error estimate for a nonsymmetric stationary diffusion problemAbstract: In this paper, a posteriori error estimates of functional type for a stationary diffusion problem with nonsymmetric coefficients are derived. The estimate is guaranteed and does not depend on any particular numerical method. An algorithm for the global minimization of the error estimate with respect to the flux over some finite dimensional subspace is presented. In numerical tests, global minimization is done over the subspace generated by Raviart-Thomas elements. The improvement of the error bound due to the p-refinement of these spaces is investigated.
|