全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Vortex structure in p-wave superconductors

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study vortices in p-wave superconductors in a Ginzburg-Landau setting. The state of the superconductor is described by a pair of complex wave functions, and the p-wave symmetric energy functional couples these in both the kinetic (gradient) and potential energy terms, giving rise to systems of partial differential equations which are nonlinear and coupled in their second derivative terms. We prove the existence of energy minimizing solutions in bounded domains $\Omega\subset\mathbb R^2$, and consider the existence and qualitative properties (such as the asymptotic behavior) of equivariant solutions defined in all of $\mathbb R^2$. The coupling of the equations at highest order changes the nature of the solutions, and many of the usual properties of classical Ginzburg-Landau vortices either do not hold for the p-wave solutions or are not immediately evident.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133