全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Quantization of spectral curves for meromorphic Higgs bundles through topological recursion

Full-Text   Cite this paper   Add to My Lib

Abstract:

A geometric quantization using the topological recursion is established for the compactified cotangent bundle of a smooth projective curve of an arbitrary genus. In this quantization, the Hitchin spectral curve of a rank $2$ meromorphic Higgs bundle on the base curve corresponds to a quantum curve, which is a Rees $D$-module on the base. The topological recursion then gives an all-order asymptotic expansion of its solution, thus determining a state vector corresponding to the spectral curve as a meromorphic Lagrangian. We establish a generalization of the topological recursion for a singular spectral curve. We show that the partial differential equation version of the topological recursion automatically selects the normal ordering of the canonical coordinates, and determines the unique quantization of the spectral curve. The quantum curve thus constructed has the semi-classical limit that agrees with the original spectral curve. Typical examples of our construction includes classical differential equations, such as Airy, Hermite, and Gau\ss\ hypergeometric equations. The topological recursion gives an asymptotic expansion of solutions to these equations at their singular points, relating Higgs bundles and various quantum invariants.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133