全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Unique Conservative Solutions to a Variational Wave Equation

DOI: 10.1007/s00205-015-0849-y

Full-Text   Cite this paper   Add to My Lib

Abstract:

Relying on the analysis of characteristics, we prove the uniqueness of conservative solutions to the variational wave equation $u_{tt}-c(u) (c(u)u_x)_x=0$. Given a solution $u(t,x)$, even if the wave speed $c(u)$ is only H\"older continuous in the $t$-$x$ plane, one can still define forward and backward characteristics in a unique way. Using a new set of independent variables $X,Y$, constant along characteristics, we prove that $t,x,u$, together with other variables, satisfy a semilinear system with smooth coefficients. From the uniqueness of the solution to this semilinear system, one obtains the uniqueness of conservative solutions to the Cauchy problem for the wave equation with general initial data $u(0,\cdot)\in H^1(\mathbb{R})$, $u_t(0,\cdot)\in L^2(\mathbb{R})$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133