全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Stick numbers of $2$-bridge knots and links

Full-Text   Cite this paper   Add to My Lib

Abstract:

Negami found an upper bound on the stick number $s(K)$ of a nontrivial knot $K$ in terms of the minimal crossing number $c(K)$ of the knot which is $s(K) \leq 2 c(K)$. Furthermore McCabe proved $s(K) \leq c(K) + 3$ for a $2$-bridge knot or link, except in the case of the unlink and the Hopf link. In this paper we construct any $2$-bridge knot or link $K$ of at least six crossings by using only $c(K)+2$ straight sticks. This gives a new upper bound on stick numbers of $2$-bridge knots and links in terms of crossing numbers.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133