全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Degrees of projections of rank loci

Full-Text   Cite this paper   Add to My Lib

Abstract:

We provide formulas for the degrees of the projections of the locus of square matrices with given rank from linear spaces spanned by a choice of matrix entries. The motivation for these computations stem from applications to `matrix rigidity'; we also view them as an excellent source of examples to test methods in intersection theory, particularly computations of Segre classes. Our results are generally expressed in terms of intersection numbers in Grassmannians, which can be computed explicitly in many cases. We observe that, surprisingly (to us), these degrees appear to match the numbers of Kekul\'e structures of certain `benzenoid hydrocarbons', and arise in many other contexts with no apparent direct connection to the enumerative geometry of rank conditions.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133