全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

DAHA and iterated torus knots

Full-Text   Cite this paper   Add to My Lib

Abstract:

The theory of DAHA-Jones polynomials is extended from torus knots to their arbitrary iterations (for any reduced root systems and weights), which incudes the polynomiality, duality and other properties of the DAHA superpolynomials. Presumably they coincide with the reduced stable Khovanov-Rozansky polynomials in the case of non-negative coefficients. The new theory matches well the classical theory of algebraic knots and (unibranch) plane curve singularities; the Puiseux expansion naturally emerges. The corresponding DAHA superpolynomials are expected to coincide with the reduced ones in the Oblomkov-Shende-Rasmussen Conjecture upon its generalization to arbitrary dominant weights. For instance, the DAHA uncolored superpolynomials at a=0, q=1 are conjectured to provide the Betti numbers of the Jacobian factors of the corresponding singularities.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133