全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

The Borel Complexity of Isomorphism for O-Minimal Theories

Full-Text   Cite this paper   Add to My Lib

Abstract:

Given a countable o-minimal theory T, we characterize the Borel complexity of isomorphism for countable models of T up to two model-theoretic invariants. If T admits a nonsimple type, then it is shown to be Borel complete by embedding the isomorphism problem for linear orders into the isomorphism problem for models of T. This is done by constructing models with specific linear orders in the tail of the Archimedean ladder of a suitable nonsimple type. If the theory admits no nonsimple types, then we use Mayer's characterization of isomorphism for such theories to compute invariants for countable models. If the theory is small, then the invariant is real-valued, and therefore its isomorphism relation is smooth. If not, the invariant corresponds to a countable set of reals, and therefore the isomorphism relation is Borel equivalent to $F_2$. Combining these two results, we conclude that (Mod(T),$\cong$) is either maximally complicated or maximally uncomplicated (subject to completely general model-theoretic lower bounds based on the number of types and the number of countable models).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133