全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Parabolic BMO estimates for pseudo-differential operators of arbitrary order

DOI: 10.1016/j.jmaa.2015.02.065

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this article we prove the BMO-$L_{\infty}$ estimate $$ \|(-\Delta)^{\gamma/2} u\|_{BMO(\mathbf{R}^{d+1})}\leq N \|\frac{\partial}{\partial t}u-A(t)u\|_{L_{\infty}(\mathbf{R}^{d+1})}, \quad \forall\, u\in C^{\infty}_c(\mathbf{R}^{d+1}) $$ for a wide class of pseudo-differential operators $A(t)$ of order $\gamma\in (0,\infty)$. The coefficients of $A(t)$ are assumed to be merely measurable in time variable. As an application to the equation $$ \frac{\partial}{\partial t}u=A(t)u+f,\quad t\in \mathbf{R} $$ we prove that for any $u\in C^{\infty}_c(\mathbf{R}^{d+1})$ $$ \|u_t\|_{L_p(\mathbf{R}^{d+1})}+\|(-\Delta)^{\gamma/2}u\|_{L_p(\mathbf{R}^{d+1})}\leq N\|u_t-A(t)u\|_{L_p(\mathbf{R}^{d+1})}, $$ where $p\ in (1,\infty)$ and the constant $N$ is independent of $u$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133