全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

A Maximal Inequality of the 2D Young Integral based on Bivariations

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this note, we establish a novel maximal inequality of the 2D Young integral $\int_a^b\int_c^d FdG$ in terms of the $(p,q)$-bivariation norms of the section functions $x\mapsto F(x,y)$ and $y\mapsto F(x,y)$ where $G:[a,b]\times [c,d]\rightarrow \mathbb{R}$ is a controlled path satisfying finite $(p,q)$-variation conditions. The proof is reminiscent from the Young's original ideas \cite{young1} in defining two-parameter integrals in terms of $(p,q)$-finite bivariations. Our result complements the standard maximal inequality established by Towghi \cite{towghi1} in terms of joint variations. We apply the maximal inequality to get novel strong approximations for 2D Young integrals w.r.t the Brownian local time in terms of number of upcrossings of a given approximating random walk.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133