|
Mathematics 2014
Uniform boundedness deciding sets, and a problem of M. ValdiviaAbstract: We prove that if a set $B$ in a Banach space $X$ can be written as an increasing, countable union $B=\cup_n B_n$ of sets $B_n$ such that no $B_n$ is uniform boundedness deciding, then also $B$ is not uniform boundedness deciding. From this we can give a positive answer to a question of M. Valdivia.
|