全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Analysis of Schwarz methods for a hybridizable discontinuous Galerkin discretization

DOI: 10.1137/140961857

Full-Text   Cite this paper   Add to My Lib

Abstract:

Schwarz methods are attractive parallel solvers for large scale linear systems obtained when partial differential equations are discretized. For hybridizable discontinuous Galerkin (HDG) methods, this is a relatively new field of research, because HDG methods impose continuity across elements using a Robin condition, while classical Schwarz solvers use Dirichlet transmission conditions. Robin conditions are used in optimized Schwarz methods to get faster convergence compared to classical Schwarz methods, and this even without overlap, when the Robin parameter is well chosen. We present in this paper a rigorous convergence analysis of Schwarz methods for the concrete case of hybridizable interior penalty (IPH) method. We show that the penalization parameter needed for convergence of IPH leads to slow convergence of the classical additive Schwarz method, and propose a modified solver which leads to much faster convergence. Our analysis is entirely at the discrete level, and thus holds for arbitrary interfaces between two subdomains. We then generalize the method to the case of many subdomains, including cross points, and obtain a new class of preconditioners for Krylov subspace methods which exhibit better convergence properties than the classical additive Schwarz preconditioner. We illustrate our results with numerical experiments.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133