全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Shifted Character Sums with Multiplicative Coefficients

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $f(n)$ be a multiplicative function satisfying $|f(n)|\leq 1$, $q$ $(\leq N^2)$ be a prime number and $a$ be an integer with $(a,\,q)=1$, $\chi$ be a non-principal Dirichlet character modulo $q$. In this paper, we shall prove that $$ \sum_{n\leq N}f(n)\chi(n+a)\ll {N\over q^{1\over 4}}\log\log(6N)+q^{1\over 4}N^{1\over 2}\log(6N)+{N\over \sqrt{\log\log(6N)}}. $$ We shall also prove that \begin{align*} &\sum_{n\leq N}f(n)\chi(n+a_1)\cdots\chi(n+a_t)\ll {N\over q^{1\over 4}}\log\log(6N)\\ &\quad+q^{1\over 4}N^{1\over 2}\log(6N)+{N\over \sqrt{\log\log(6N)}}, \end{align*} where $t\geq 2$, $a_1,\,\cdots,\,a_t$ are pairwise distinct integers modulo $q$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133