全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Beta-gamma algebra identities and Lie-theoretic exponential functionals of Brownian motion

Full-Text   Cite this paper   Add to My Lib

Abstract:

We explicitly compute the exit law of a certain hypoelliptic Brownian motion on a solvable Lie group. The underlying random variable can be seen as a multidimensional exponential functional of Brownian motion. As a consequence, we obtain hidden identities in law between gamma random variables as the probabilistic manifestation of braid relations. The classical beta-gamma algebra identity corresponds to the only braid move in a root system of type $A_2$. The other ones seem new. A key ingredient is a conditional representation theorem. It relates our hypoelliptic Brownian motion conditioned on exiting at a fixed point to a certain deterministic transform of Brownian motion. The identities in law between gamma variables tropicalize to identities between exponential random variables. These are continuous versions of identities between geometric random variables related to changes of parametrizations in Lusztig's canonical basis. Hence, we see that the exit law of our hypoelliptic Brownian motion is the geometric analogue of a simple natural measure on Lusztig's canonical basis.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133