|
Mathematics 2014
Most primitive groups are full automorphism groups of edge-transitive hypergraphsDOI: 10.1016/j.jalgebra.2014.09.002 Abstract: We prove that, for a primitive permutation group G acting on a set of size n, other than the alternating group, the probability that Aut(X,Y^G) = G for a random subset Y of X, tends to 1 as n tends to infinity. So the property of the title holds for all primitive groups except the alternating groups and finitely many others. This answers a question of M. Klin. Moreover, we give an upper bound n^{1/2+\epsilon} for the minimum size of the edges in such a hypergraph. This is essentially best possible.
|