全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

New proofs of two $q$-analogues of Koshy's formula

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper we prove a $q$-analogue of Koshy's formula in terms of the Narayana polynomial due to Lassalle and a $q$-analogue of Koshy's formula in terms of $q$-hypergeometric series due to Andrews by applying the inclusion-exclusion principle on Dyck paths and on partitions. We generalize these two $q$-analogues of Koshy's formula for $q$-Catalan numbers to that for $q$-Ballot numbers. This work also answers an open question by Lassalle and two questions raised by Andrews in 2010. We conjecture that if $n$ is odd, then for $m\ge n\ge 1$, the polynomial $(1+q^n){m\brack n-1}_q$ is unimodal. If $n$ is even, for any even $j\ne 0$ and $m\ge n\ge 1$, the polynomial $(1+q^n)[j]_q{m\brack n-1}_q$ is unimodal. This implies the answer to the second problem posed by Andrews.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133