全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

Computing the metric dimension of a graph from primary subgraphs

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $G$ be a connected graph. Given an ordered set $W = \{w_1, w_2,\dots w_k\}\subseteq V(G)$ and a vertex $u\in V(G)$, the representation of $u$ with respect to $W$ is the ordered $k$-tuple $(d(u,w_1), d(u,w_2),\dots,$ $d(u,w_k))$, where $d(u,w_i)$ denotes the distance between $u$ and $w_i$. The set $W$ is a metric generator for $G$ if every two different vertices of $G$ have distinct representations. A minimum cardinality metric generator is called a \emph{metric basis} of $G$ and its cardinality is called the \emph{metric dimension} of G. It is well known that the problem of finding the metric dimension of a graph is NP-Hard. In this paper we obtain closed formulae for the metric dimension of graphs with cut vertices. The main results are applied to specific constructions including rooted product graphs, corona product graphs, block graphs and chains of graphs.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133