全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

Sidon Sets and graphs without 4-cycles

Full-Text   Cite this paper   Add to My Lib

Abstract:

The problem of determining the maximum number of edges in an $n$-vertex graph that does not contain a 4-cycle has a rich history in extremal graph theory. Using Sidon sets constructed by Bose and Chowla, for each odd prime power $q$ we construct a graph with $q^2 - q - 2$ vertices that does not contain a 4-cycle and has at least $\frac{1}{2}q^3 - q^2 - O(q^{3/4})$ edges. This disproves a conjecture of Abreu, Balbuena, and Labbate concerning the Tur\'{a}n number $\mathrm{ex}(q^2 - q - 2, C_4)$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133