全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

Median eigenvalues of bipartite subcubic graphs

Full-Text   Cite this paper   Add to My Lib

Abstract:

It is proved that the median eigenvalues of every connected bipartite graph $G$ of maximum degree at most three belong to the interval $[-1,1]$ with a single exception of the Heawood graph, whose median eigenvalues are $\pm\sqrt{2}$. Moreover, if $G$ is not isomorphic to the Heawood graph, then a positive fraction of its median eigenvalues lie in the interval $[-1,1]$. This surprising result has been motivated by the problem about HOMO-LUMO separation that arises in mathematical chemistry.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133