全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

Lie-Poisson theory for direct limit Lie algebras

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we develop the fundamentals of Lie-Poisson theory for direct limits $G=\dirlim G_{n}$ of complex algebraic groups $G_{n}$ and their Lie algebras $\fg=\dirlim \fg_{n}$. We show that $\fg^{*}=\invlim\fg_{n}^{*}$ has the structure of a Poisson provariety and that each coadjoint orbit of $G$ on $\fg^{*}$ has the structure of an ind-variety. We construct a weak symplectic form on every coadjoint orbit and prove that the coadjoint orbits form a weak symplectic foliation of the Poisson provariety $\fg^{*}$. We apply our results to the specific setting of $G=GL(\infty)=\dirlim GL(n,\C)$ and $\fg^{*}= M(\infty)=\invlim \fgl(n,\C)$, the space of infinite complex matrices with arbitrary entries. We construct a Gelfand-Zeitlin integrable system on $M(\infty)$, which generalizes the one constructed by Kostant and Wallach on $\fgl(n,\C)$. The system integrates to an action of a direct limit group $A(\infty)$ on $M(\infty)$, whose generic orbits are Lagrangian ind-subvarieties of the corresponding coadjoint orbit of $GL(\infty)$ on $M(\infty)$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133