全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

Non-conventional ergodic averages for several commuting actions of an amenable group

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $(X,\mu)$ be a probability space, $G$ a countable amenable group and $(F_n)_n$ a left F\o lner sequence in $G$. This paper analyzes the non-conventional ergodic averages \[\frac{1}{|F_n|}\sum_{g \in F_n}\prod_{i=1}^d (f_i\circ T_1^g\cdots T_i^g)\] associated to a commuting tuple of $\mu$-preserving actions $T_1$, ..., $T_d:G\curvearrowright X$ and $f_1$, ..., $f_d \in L^\infty(\mu)$. We prove that these averages always converge in $\|\cdot\|_2$, and that they witness a multiple recurrence phenomenon when $f_1 = \ldots = f_d = 1_A$ for a non-negligible set $A\subseteq X$. This proves a conjecture of Bergelson, McCutcheon and Zhang. The proof relies on an adaptation from earlier works of the machinery of sated extensions.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133