全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

On the dimension of the graph of the classical Weierstrass function

DOI: 10.1016/j.aim.2014.07.033

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper examines dimension of the graph of the famous Weierstrass non-differentiable function \[ W_{\lambda, b} (x) = \sum_{n=0}^{\infty}\lambda^n\cos(2\pi b^n x) \] for an integer $b \ge 2$ and $1/b < \lambda < 1$. We prove that for every $b$ there exists (explicitly given) $\lambda_b \in (1/b, 1)$ such that the Hausdorff dimension of the graph of $W_{\lambda, b}$ is equal to $D = 2+\frac{\log\lambda}{\log b}$ for every $\lambda\in(\lambda_b,1)$. We also show that the dimension is equal to $D$ for almost every $\lambda$ on some larger interval. This partially solves a well-known thirty-year-old conjecture. Furthermore, we prove that the Hausdorff dimension of the graph of the function \[ f (x) = \sum_{n=0}^{\infty}\lambda^n\phi(b^n x) \] for an integer $b \ge 2$ and $1/b < \lambda < 1$ is equal to $D$ for a typical $\mathbb Z$-periodic $C^3$ function $\phi$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133