全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

Upper bounds on packing density for circular cylinders with high aspect ratio

DOI: 10.1007/s00454-014-9593-6

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the early 1990s, A. Bezdek and W. Kuperberg used a relatively simple argument to show a surprising result: The maximum packing density of circular cylinders of infinite length in $\mathbb{R}^3$ is exactly $\pi/\sqrt{12}$, the planar packing density of the circle. This paper modifies their method to prove a bound on the packing density of finite length circular cylinders. In fact, the maximum packing density for unit radius cylinders of length $t$ in $\mathbb{R}^3$ is bounded above by $\pi/\sqrt{12} + 10/t$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133