全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2012 

A Numerical Scheme for Invariant Distributions of Constrained Diffusions

Full-Text   Cite this paper   Add to My Lib

Abstract:

Reflected diffusions in polyhedral domains are commonly used as approximate models for stochastic processing networks in heavy traffic. Stationary distributions of such models give useful information on the steady state performance of the corresponding stochastic networks and thus it is important to develop reliable and efficient algorithms for numerical computation of such distributions. In this work we propose and analyze a Monte-Carlo scheme based on an Euler type discretization of the reflected stochastic differential equation using a single sequence of time discretization steps which decrease to zero as time approaches infinity. Appropriately weighted empirical measures constructed from the simulated discretized reflected diffusion are proposed as approximations for the invariant probability measure of the true diffusion model. Almost sure consistency results are established that in particular show that weighted averages of polynomially growing continuous functionals evaluated on the discretized simulated system converge a.s. to the corresponding integrals with respect to the invariant measure. Proofs rely on constructing suitable Lyapunov functions for tightness and uniform integrability and characterizing almost sure limit points through an extension of Echeverria's criteria for reflected diffusions. Regularity properties of the underlying Skorohod problems play a key role in the proofs. Rates of convergence for suitable families of test functions are also obtained. A key advantage of Monte-Carlo methods is the ease of implementation, particularly for high dimensional problems. A numerical example of a eight dimensional Skorohod problem is presented to illustrate the applicability of the approach.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133