全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2012 

A note on mixing times of planar random walks

Full-Text   Cite this paper   Add to My Lib

Abstract:

We present an infinite family of finite planar graphs $\{X_n\}$ with degree at most five and such that for some constant $c > 0$, $$ \lambda_1(X_n) \geq c(\frac{\log \diam(X_n)}{\diam(X_n)})^2\,, $$ where $\lambda_1$ denotes the smallest non-zero eigenvalue of the graph Laplacian. This significantly simplifies a construction of Louder and Souto. We also remark that such a lower bound cannot hold when the diameter is replaced by the average squared distance: There exists a constant $c > 0$ such that for any family $\{X_n\}$ of planar graphs we have $$ \lambda_1(X_n) \leq c (\frac{1}{|X_n|^2} \sum_{x,y \in X_n} d(x,y)^2)^{-1}\,, $$ where $d$ denotes the path metric on $X_n$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133