全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2012 

Classical solutions for a logarithmic fractional diffusion equation

Full-Text   Cite this paper   Add to My Lib

Abstract:

We prove global existence and uniqueness of strong solutions to the logarithmic porous medium type equation with fractional diffusion $$ \partial_tu+(-\Delta)^{1/2}\log(1+u)=0, $$ posed for $x\in \mathbb{R}$, with nonnegative initial data in some function space of $L \logL$ type. The solutions are shown to become bounded and $C^\infty$ smooth in $(x,t)$ for all positive times. We also reformulate this equation as a transport equation with nonlocal velocity and critical viscosity, a topic of current relevance. Interesting functional inequalities are involved.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133