全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2012 

The Koszul complex of a moment map

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $K\to U(V)$ be a unitary representation of the compact Lie group $K$. Then there is a canonical moment mapping $\rho\colon V\to\mathfrak k^*$. We have the Koszul complex ${\mathcal K}(\rho,\mathcal C^\infty(V))$ of the component functions $\rho_1,...,\rho_k$ of $\rho$. Let $G=K_{\mathbb C}$, the complexification of $K$. We show that the Koszul complex is a resolution of the smooth functions on $\rho^{-1}(0)$ if and only if $G\to\GL(V)$ is 1-large, a concept introduced in earlier work of the second author. Now let $M$ be a symplectic manifold with a Hamiltonian action of $K$. Let $\rho$ be a moment mapping and consider the Koszul complex given by the component functions of $\rho$. We show that the Koszul complex is a resolution of the smooth functions on $Z=\rho^{-1}(0)$ if and only if the complexification of each symplectic slice representation at a point of $Z$ is 1-large.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133