全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

On Quadratic Fields Generated by Discriminants of Irreducible Trinomials

Full-Text   Cite this paper   Add to My Lib

Abstract:

A. Mukhopadhyay, M. R. Murty and K. Srinivas (http://arxiv.org/abs/0808.0418) have recently studied various arithmetic properties of the discriminant $\Delta_n(a,b)$ of the trinomial $f_{n,a,b}(t) = t^n + at + b$, where $n \ge 5$ is a fixed integer. In particular, it is shown that, under the $abc$-conjecture, for every $n \equiv 1 \pmod 4$, the quadratic fields $\Q(\sqrt{\Delta_n(a,b)})$ are pairwise distinct for a positive proportion of such discriminants with integers $a$ and $b$ such that $f_{n,a,b}$ is irreducible over $\Q$ and $|\Delta_n(a,b)|\le X$, as $X\to \infty$. We use the square-sieve and bounds of character sums to obtain a weaker but unconditional version of this result.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133