全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

Quivers with relations arising from Koszul algebras of $\mathfrak g$-invariants

DOI: 10.1016/j.jalgebra.2009.09.032

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $\mathfrak g$ be a complex simple Lie algebra and let $\Psi$ be an extremal set of positive roots. One associates with $\Psi$ an infinite dimensional Koszul algebra $\bold S_\Psi^{\lie g}$ which is a graded subalgebra of the locally finite part of $((\bold V)^{op}\tensor S(\lie g))^{\lie g}$, where $\bold V$ is the direct sum of all simple finite dimensional $\lie g$-modules. We describe the structure of the algebra $\bold S_\Psi^{\lie g}$ explicitly in terms of an infinite quiver with relations for $\lie g$ of types $A$ and $C$. We also describe several infinite families of quivers and finite dimensional algebras arising from this construction.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133