全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

A gap principle for dynamics

DOI: 10.1112/S0010437X09004667

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $f_1,...,f_g\in {\mathbb C}(z)$ be rational functions, let $\Phi=(f_1,...,f_g)$ denote their coordinatewise action on $({\mathbb P}^1)^g$, let $V\subset ({\mathbb P}^1)^g$ be a proper subvariety, and let $P=(x_1,...,x_g)\in ({\mathbb P}^1)^g({\mathbb C})$ be a nonpreperiodic point for $\Phi$. We show that if $V$ does not contain any periodic subvarieties of positive dimension, then the set of $n$ such that $\Phi^n(P) \in V({\mathbb C})$ must be very sparse. In particular, for any $k$ and any sufficiently large $N$, the number of $n \leq N$ such that $\Phi^n(P) \in V({\mathbb C})$ is less than $\log^k N$, where $\log^k$ denotes the $k$-th iterate of the $\log$ function. This can be interpreted as an analog of the gap principle of Davenport-Roth and Mumford.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133