全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

The inverse conjecture for the Gowers norm over finite fields via the correspondence principle

DOI: 10.2140/apde.2010.3.1

Full-Text   Cite this paper   Add to My Lib

Abstract:

The inverse conjecture for the Gowers norms $U^d(V)$ for finite-dimensional vector spaces $V$ over a finite field $\F$ asserts, roughly speaking, that a bounded function $f$ has large Gowers norm $\|f\|_{U^d(V)}$ if and only if it correlates with a phase polynomial $\phi = e_\F(P)$ of degree at most $d-1$, thus $P: V \to \F$ is a polynomial of degree at most $d-1$. In this paper, we develop a variant of the Furstenberg correspondence principle which allows us to establish this conjecture in the large characteristic case $\charac(F) \geq d$ from an ergodic theory counterpart, which was recently established by Bergelson and the authors. In low characteristic we obtain a partial result, in which the phase polynomial $\phi$ is allowed to be of some larger degree $C(d)$. The full inverse conjecture remains open in low characteristic; the counterexamples by Lovett-Meshulam-Samorodnitsky or Green-Tao in this setting can be avoided by a slight reformulation of the conjecture.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133