全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

The Newton stratification on deformations of local G-shtukas

DOI: 10.1515/CRELLE.2011.044

Full-Text   Cite this paper   Add to My Lib

Abstract:

Bounded local G-shtukas are function field analogs for p-divisible groups with extra structure. We describe their deformations and moduli spaces. The latter are analogous to Rapoport-Zink spaces for p-divisible groups. The underlying schemes of these moduli spaces are affine Deligne-Lusztig varieties. For basic Newton polygons the closed Newton stratum in the universal deformation of a local G-shtuka is isomorphic to the completion of a corresponding affine Deligne-Lusztig variety in that point. This yields bounds on the dimension and proves equidimensionality of the basic affine Deligne-Lusztig varieties.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133