全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

On unique extension of time changed reflecting Brownian motions

DOI: 10.1214/08-AIHP301

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $D$ be an unbounded domain in $\RR^d$ with $d\geq 3$. We show that if $D$ contains an unbounded uniform domain, then the symmetric reflecting Brownian motion (RBM) on $\overline D$ is transient. Next assume that RBM $X$ on $\overline D$ is transient and let $Y$ be its time change by Revuz measure ${\bf 1}_D(x) m(x)dx$ for a strictly positive continuous integrable function $m$ on $\overline D$. We further show that if there is some $r>0$ so that $D\setminus \overline {B(0, r)}$ is an unbounded uniform domain, then $Y$ admits one and only one symmetric diffusion that genuinely extends it and admits no killings. In other words, in this case $X$ (or equivalently, $Y$) has a unique Martin boundary point at infinity.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133