全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

On continuous choice of retractions onto nonconvex subsets

DOI: 10.1016/j.topol.2009.04.066

Full-Text   Cite this paper   Add to My Lib

Abstract:

For a Banach space $B$ and for a class $\A$ of its bounded closed retracts, endowed with the Hausdorff metric, we prove that retractions on elements $A \in \A$ can be chosen to depend continuously on $A$, whenever nonconvexity of each $A \in \A$ is less than $\f{1}{2}$. The key geometric argument is that the set of all uniform retractions onto an $\a-$paraconvex set (in the spirit of E. Michael) is $\frac{\a}{1-\a}-$paraconvex subset in the space of continuous mappings of $B$ into itself. For a Hilbert space $H$ the estimate $\frac{\a}{1-\a}$ can be improved to $\frac{\a (1+\a^{2})}{1-\a^{2}}$ and the constant $\f{1}{2}$ can be reduced to the root of the equation $\a+ \a^{2}+a^{3}=1$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133