全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

Precise estimates for the subelliptic heat kernel on H-type groups

DOI: 10.1016/j.matpur.2009.04.011

Full-Text   Cite this paper   Add to My Lib

Abstract:

We establish precise upper and lower bounds for the subelliptic heat kernel on nilpotent Lie groups $G$ of H-type. Specifically, we show that there exist positive constants $C_1$, $C_2$ and a polynomial correction function $Q_t$ on $G$ such that $$C_1 Q_t e^{-\frac{d^2}{4t}} \le p_t \le C_2 Q_t e^{-\frac{d^2}{4t}}$$ where $p_t$ is the heat kernel, and $d$ the Carnot-Carath\'eodory distance on $G$. We also obtain similar bounds on the norm of its subelliptic gradient $|\nabla p_t|$. Along the way, we record explicit formulas for the distance function $d$ and the subriemannian geodesics of H-type groups.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133