全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

Remarks on Kahler Ricci Flow

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study some estimates along the Kahler Ricci flow on Fano manifolds. Using these estimates, we show the convergence of Kahler Ricci flow directly if the $\alpha$-invariant of the canonical class is greater than $\frac{n}{n+1}$. Applying these convergence theorems, we can give a flow proof of Calabi conjecture on such Fano manifolds. In particular, the existence of Kahler Einstein metrics on a lot of Fano surfaces can be proved by flow method. Note that this geometric conclusion (based on the same assumption) was established earlier via elliptic method by G. Tian. However, a new proof based on Kahler Ricci flow should be still interesting in its own right.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133