全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

Global well-posedness and inviscid limit for the modified Korteweg-de Vries-Burgers equation

Full-Text   Cite this paper   Add to My Lib

Abstract:

Considering the Cauchy problem for the modified Korteweg-de Vries-Burgers equation $u_t+u_{xxx}+\epsilon |\partial_x|^{2\alpha}u=2(u^{3})_x, u(0)=\phi$, where $0<\epsilon,\alpha\leq 1$ and $u$ is a real-valued function, we show that it is uniformly globally well-posed in $H^s (s\geq1)$ for all $\epsilon \in (0,1]$. Moreover, we prove that for any $s\geq 1$ and $T>0$, its solution converges in $C([0,T]; H^s)$ to that of the MKdV equation if $\epsilon$ tends to 0.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133