全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

Confidence Sets Based on Penalized Maximum Likelihood Estimators in Gaussian Regression

DOI: 10.1214/09-EJS523

Full-Text   Cite this paper   Add to My Lib

Abstract:

Confidence intervals based on penalized maximum likelihood estimators such as the LASSO, adaptive LASSO, and hard-thresholding are analyzed. In the known-variance case, the finite-sample coverage properties of such intervals are determined and it is shown that symmetric intervals are the shortest. The length of the shortest intervals based on the hard-thresholding estimator is larger than the length of the shortest interval based on the adaptive LASSO, which is larger than the length of the shortest interval based on the LASSO, which in turn is larger than the standard interval based on the maximum likelihood estimator. In the case where the penalized estimators are tuned to possess the `sparsity property', the intervals based on these estimators are larger than the standard interval by an order of magnitude. Furthermore, a simple asymptotic confidence interval construction in the `sparse' case, that also applies to the smoothly clipped absolute deviation estimator, is discussed. The results for the known-variance case are shown to carry over to the unknown-variance case in an appropriate asymptotic sense.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133