全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

Uniconvergence theorems for Sturm--Liouville operators with potentials from Sobolev space $W_2^{-1}[0,π]$

Full-Text   Cite this paper   Add to My Lib

Abstract:

We consider a Sturm--Liouville $Ly=-y''+q(x)y$ in space $L_2[0,\pi]$ with potential from Sobolev space $W_2^{-1}[0,\pi]$. Moreover, we assume, that $q=u'$, where $u\in L_2[0,\pi]$. We consider Direchlet boundary conditions $y(0)=y(\pi)=0$, although we can treat a boundary conditions of Sturm type. It is known, that operators of such class have a discrete spectr with only accumulation point $+\infty$ and the system $\{y_k\}_1^\infty$ of eigen and associated functions is a Riesz basis in $L_2[0,\pi]$. Moreover, this basis is a Hilbert--Schmidt perturbation of the basis $\{sin(kx)\}_1^\infty$. In this paper we prove the uniconvergence theorem: for any element $f\in L_2[0,\pi]$ the sequence $P_nf-S_nf\to0$ as $n\to\infty$ in $C[0,\pi]$ (here $P_n$ and $S_n$ are the Riesz projectors to $\{y_k\}_1^n$ and $\{\sin(kt)\}_1^n$ respectively).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133