全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

On Using (Z^2, +) Homomorphisms to Generate Pairs of Coprime Integers

Full-Text   Cite this paper   Add to My Lib

Abstract:

We use the group $(\Z^2,+)$ and two associated homomorphisms, $\tau_0, \tau_1$, to generate all distinct, non-zero pairs of coprime, positive integers which we describe within the context of a binary tree which we denote $T$. While this idea is related to the Stern-Brocot tree and the map of relatively prime pairs, the parents of an integer pair these trees do not necessarily correspond to the parents of the same integer pair in $T$. Our main result is a proof that for $x_i \in \{0,1\}$, the sum of the pair $\tau_{x_1}\tau_{x_2}... \tau_{x_n} [1,2]$ is equal to the sum of the pair $\tau_{x_n}\tau_{x_{n-1}} ... \tau_{x_1} [1,2]$. Further, we give a conjecture as to the well-ordering of the sums of these integers.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133