全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

Mirabolic Robinson-Shensted-Knuth correspondence

Full-Text   Cite this paper   Add to My Lib

Abstract:

The set of orbits of $GL(V)$ in $Fl(V)\times Fl(V)\times V$ is finite, and is parametrized by the set of certain decorated permutations in a work of Solomon. We describe a Mirabolic RSK correspondence (bijective) between this set of decorated permutations and the set of triples: a pair of standard Young tableaux, and an extra partition. It gives rise to a partition of the set of orbits into combinatorial cells. We prove that the same partition is given by the type of a general conormal vector to an orbit. We conjecture that the same partition is given by the bimodule Kazhdan-Lusztig cells in the bimodule over the Iwahori-Hecke algebra of $GL(V)$ arising from $Fl(V)\times Fl(V)\times V$. We also give conjectural applications to the classification of unipotent mirabolic character sheaves on $GL(V)\times V$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133