全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

Injectivity on the set of conjugacy classes of some monomorphisms between Artin groups

DOI: 10.1016/j.jalgebra.2008.12.013

Full-Text   Cite this paper   Add to My Lib

Abstract:

There are well-known monomorphisms between the Artin groups of finite type $\arA_n$, $\arB_n=\arC_n$ and affine type $\tilde \arA_{n-1}$, $\tilde\arC_{n-1}$. The Artin group $A(\arA_n)$ is isomorphic to the $(n+1)$-strand braid group $B_{n+1}$, and the other three Artin groups are isomorphic to some subgroups of $B_{n+1}$. The inclusions between these subgroups yield monomorphisms $A(\arB_n)\to A(\arA_n)$, $A(\tilde \arA_{n-1})\to A(\arB_n)$ and $A(\tilde \arC_{n-1})\to A(\arB_n)$. There are another type of monomorphisms $A(\arB_d)\to A(\arA_{md-1})$, $A(\arB_d)\to A(\arB_{md})$ and $A(\arB_d)\to A(\arA_{md})$ which are induced by isomorphisms between Artin groups of type $\arB$ and centralizers of periodic braids. In this paper, we show that the monomorphisms $A(\arB_d)\to A(\arA_{md-1})$, $A(\arB_d)\to A(\arB_{md})$ and $A(\arB_d)\to A(\arA_{md})$ induce injective functions on the set of conjugacy classes, and that none of the monomorphisms $A(\arB_n)\to A(\arA_n)$, $A(\tilde \arA_{n-1})\to A(\arB_n)$ and $A(\tilde \arC_{n-1})\to A(\arB_n)$ does so.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133