全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

An Analytic Study of the Reversal of Hartmann Flows by Rotating Magnetic Fields

DOI: 10.1155/2012/641738

Full-Text   Cite this paper   Add to My Lib

Abstract:

The effects of a background uniform rotating magnetic field acting in a conducting fluid with a parallel flow are studied analytically. The stationary version with a transversal magnetic field is well known as generating Hartmann boundary layers. The Lorentz force includes now one term depending on the rotation speed and the distance to the boundary wall. As one intuitively expects, the rotation of magnetic field lines pushes backwards or forwards the flow. One consequence is that near the wall the flow will eventually reverse its direction, provided the rate of rotation and/or the magnetic field are large enough. The configuration could also describe a fixed magnetic field and a rotating flow. 1. Introduction In [1], a generalization of the Hartmann flow was announced. The Hartmann flow is a parallel one influenced by a strong transversal magnetic field [2, 3] and has been studied intensively for its role in many aspects of plasma physics, such as liquid metal pumping [4, 5], plasma convection [6, 7], and geophysics [8]. We now will allow the background magnetic field to rotate while keeping its spatial uniformity. Our aim in this paper is to analyze in depth the action of this field upon the flow through the Lorentz force, emphasizing the possibility of flow reversal at some time near the walls confining the fluid. Given the Galilean invariance of the relevant equations, we could change to a rotating reference frame and interpret the problem as consisting in a fixed magnetic field and a rotating flow; this configuration could perhaps be more easily constructed and have wider applications. Let us begin by recalling briefly the MHD equations appropriate for our configuration. The flow will be assumed two dimensional, and the background magnetic field will be uniform in space but rotating in time at a rate given by the angle : Although this field will create a secondary one , it is assumed that all the terms in may be neglected when an analogous one for is present; thus, , . This does not hold for the current density, as , . The approximate induction equation becomes where is the flow velocity and the resistivity. By substituting by its value in (1.1), uncurling (1.2) to find and taking it to the Lorents force , we may write the momentum equation as where is the conductivity, the viscosity, and is the sum of the pressure and the gauge obtained by uncurling (1.2). Detailed calculations may be found in [1]. If in analogy with the classical Hartmann flow we assume a horizontal flow , (1.3) reduces to where includes all the conservative forces upon the

References

[1]  M. N. Nú?ez, “Boundary layer separation of hydromagnetic ows,” Zeitschrift für Angewandte Mathematik und Mechanik, vol. 92, pp. 445–451, 2012.
[2]  J. Hartmann and F. Lazarus, “Theory of the laminar ow of an electrically conducting liquid in an homogeneous magnetic field,” Kongelige Danske Videnskabernes Selskab Matematisk, vol. 15, no. 6, pp. 1–28, 1937.
[3]  P. A. Davidson, An Introduction to Magnetohydrodynamics, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, UK, 2001.
[4]  N. Ma and J. S. Walker, “Liquid-metal buoyant convection in a vertical cylinder with a strong vertical magnetic field and with a nonaxisymmetric temperature,” Physics of Fluids, vol. 7, no. 8, pp. 2061–2071, 1995.
[5]  K. Okada and H. Ozoe, “Experimental heat transfer rates of natural convection of molten gallium suppressed under an external magnetic field in either the X, Y, or Z direction,” Journal of Heat Transfer, vol. 114, no. 1, pp. 107–114, 1992.
[6]  M. D. Cowley, “Natural convection in rectangular enclosures of arbitrary orientation with magnetic field vertical,” Magnetohydrodynamics, vol. 32, no. 4, pp. 390–398, 1996.
[7]  J. P. Garandet, T. Alboussiere, and R. Moreau, “Buoyancy-driven convection in rectangular enclosure with a tranverse magnetic field,” International Journal of Heat and Mass Transfer, vol. 35, no. 4, pp. 741–748, 1992.
[8]  B. Desjardins, E. Dormy, and E. Grenier, “Stability of mixed Ekman-Hartmann boundary layers,” Nonlinearity, vol. 12, no. 2, pp. 181–199, 1999.
[9]  P. J. Zandbergen and D. Dijkstra, “von Kármán swirling flows,” in Annual Review of Fluid Mechanics, vol. 19, pp. 465–491, Annual Reviews, Palo Alto, Calif, USA, 1987.
[10]  P. A. Davidson and A. Pothérat, “A note on B?dewadt-Hartmann layers,” European Journal of Mechanics. B. Fluids, vol. 21, no. 5, pp. 545–559, 2002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133