全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2015 

Isoperimetric profiles and random walks on some permutation wreath products

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study the isoperimetric profiles of certain families of finitely generated groups defined via marked Schreier graphs and permutation wreath products. The groups we study are among the "simplest" examples within a much larger class of groups, all defined via marked Schreier graphs and/or action on rooted trees, which includes such examples as the long range group, Grigorchuck group and the basillica group. The highly non-linear structure of these groups make them both interesting and difficult to study. Because of the relative simplicity of the Schreier graphs that define the groups we study here (the key fact is that they contained very large regions that are "one dimensional"), we are able to obtain sharp explicit bounds on the $L^1$ and $L^2$ isoperimetric profiles of these groups. As usual, these sharp isoperimetric profile estimates provide sharp bounds on the probability of return of simple random walk. Nevertheless, within each of the families of groups we study there are also many cases for which the existing techniques appear inadequate and this leads to a variety of open problems.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133