全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2015 

The existence of Zariski dense orbits for polynomial endomorphisms on the affine plane

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper we prove the following theorem. Let $f:\mathbb{A}^2\rightarrow \mathbb{A}^2$ be a dominate polynomial endomorphisms defined over an algebraically closed field $k$ of characteristic $0$. If there are no nonconstant rational function $g:\mathbb{A}^2\dashrightarrow \mathbb{P}^1$ satisfying $g\circ f=g$, then there exists a point $p\in \mathbb{A}^2(k)$ whose orbit under $f$ is Zariski dense in $\mathbb{A}^2$. This result gives us a positive answer to a conjecture of Amerik, Bogomolov and Rovinsky ( and Zhang) for polynomial endomorphisms on the affine plane.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133