全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2015 

Lebesgue decomposition in action via semidefinite relaxations

Full-Text   Cite this paper   Add to My Lib

Abstract:

Given all (finite) moments of two measures $\mu$ and $\lambda$ on $\R^n$, we provide a numerical scheme to obtain the Lebesgue decomposition $\mu=\nu+\psi$ with $\nu\ll\lambda$ and $\psi\perp\lambda$. When$\nu$ has a density in $L\_\infty(\lambda)$ then we obtain two sequences of finite moments vectorsof increasing size (the number of moments) which converge to the moments of $\nu$ and $\psi$ respectively, as the number of moments increases. Importantly, {\it no} \`a priori knowledge on the supports of $\mu, \nu$ and $\psi$ is required.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133