全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2015 

Shelah's eventual categoricity conjecture in tame AECs with primes

Full-Text   Cite this paper   Add to My Lib

Abstract:

Two new cases of Shelah's eventual categoricity conjecture are established: $\mathbf{Theorem}$ Let $K$ be an AEC with amalgamation and no maximal models. Write $H_2 := \beth_{\left(2^{\beth_{\left(2^{\text{LS} (K)}\right)^+}}\right)^+}$. Assume that $K$ is $H_2$-tame and $K_{\ge H_2}$ has primes over sets of the form $M \cup \{a\}$. If $K$ is categorical in some $\lambda > H_2$, then $K$ is categorical in all $\lambda' \ge H_2$. The result had previously been established when the stronger locality assumptions of full tameness and shortness are also required. An application of the method of proof is that Shelah's categoricity conjecture holds in the context of homogeneous model theory: $\mathbf{Theorem}$ Let $D$ be a homogeneous diagram in a first-order theory $T$. If $D$ is categorical in a $\lambda > |T|$, then $D$ is categorical in all $\lambda' \ge \min (\lambda, \beth_{(2^{|T|})^+})$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133