全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

Planar lattices do not recover from forest fires

DOI: 10.1214/14-AOP958

Full-Text   Cite this paper   Add to My Lib

Abstract:

Self-destructive percolation with parameters $p,\delta$ is obtained by taking a site percolation configuration with parameter $p$, closing all sites belonging to infinite clusters, then opening every closed site with probability $\delta$, independently of the rest. Call $\theta(p,\delta)$ the probability that the origin is in an infinite cluster in the configuration thus obtained. For two-dimensional lattices, we show the existence of $\delta>0$ such that, for any $p>p_c$, $\theta(p,\delta)=0$. This proves the conjecture of van den Berg and Brouwer [Random Structures Algorithms 24 (2004) 480-501], who introduced the model. Our results combined with those of van den Berg and Brouwer [Random Structures Algorithms 24 (2004) 480-501] imply the nonexistence of the infinite parameter forest-fire model. The methods herein apply to site and bond percolation on any two-dimensional planar lattice with sufficient symmetry.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133